You are here:

Review of STEM Teaching Models: a Call for Promoting Interdisciplinary Approaches in Regular Mathematics Lessons

, University of Education Schwaebisch Gmuend, Germany

Society for Information Technology & Teacher Education International Conference, in Washington, D.C., United States ISBN 978-1-939797-32-2 Publisher: Association for the Advancement of Computing in Education (AACE), Chesapeake, VA


Interdisciplinary teaching in STEM is often seen as a collaboration of different subjects teaching a common theme. This view undermines successful interdisciplinary approaches that can be deployed in a single class. Two examples of interdisciplinary math lessons, using pie charts and bar charts respectively, will be used to demonstrate how this can be realized. The potential for deeper integration among the subjects involved will also be analyzed.


Zell, S. (2018). Review of STEM Teaching Models: a Call for Promoting Interdisciplinary Approaches in Regular Mathematics Lessons. In E. Langran & J. Borup (Eds.), Proceedings of Society for Information Technology & Teacher Education International Conference (pp. 1864-1871). Washington, D.C., United States: Association for the Advancement of Computing in Education (AACE). Retrieved February 16, 2019 from .

View References & Citations Map


  1. Beane, J. (1996). On the shoulders of giants! The case for curriculum integration. Middle school Journal, 28, 6-11.
  2. Becker, K., & Park, K. (2011). Effects of integrative approaches among science, technology, engineering, and mathematics (STEM) subjects on students’ learning: A preliminary meta-analysis. Journal of STEM Education, 12(5), 23-37.
  3. Beckmann, A. (2009). A Conceptual Framework for Cross-Curricular Teaching. The Montana Mathematics Enthusiast 6 Suppl. 1, 1-58.
  4. Berlin, D.F., & White, A.L. (1995). Connecting School Science and Mathematics. In P.A. House, & A.F. Coxford (ed.). Connecting Mathematics across the curriculum. NCTM Yearbook, 23-33.
  5. Brooks, J.G., & Brooks, M.G. (1993). In search of understanding: The case for constructivist classrooms. Alexandria, VA: Association for Supervision and Curriculum Development.
  6. Bryan, L.A., Moore, T.J., Johnson, C.C., & Roehrig, G.H. (2016). Integrated STEM Education. In C.C. Johnson, E.E. PetersBurton, & T.J. Moore (ed.). STEM roadmap: a framework for integrated STEM education. New York: Routledge, 23-37.
  7. Bybee, R.W. (2010). Advancing STEM education: A 2020 vision. Technology and Engineering Teacher, 70(1), 30-35.
  8. Common Core State Standards Initiative. (2010). Available at
  9. Czerniak, C.M., & Johnson, C.C. (2014). Interdisciplinary science teaching. In S.K. Abell& N.G. Lederman (ed.). Handbook of research on science education (2nd ed., 395-411). London and New York: Routledge
  10. Davison, D.M., Miller, K.W., Metheny, D.L. (1995). What Does Integration of Science and Mathematics Really Mean? School Science and Mathematics, 95(5), 226-230.
  11. Dunker, L., & Popp, W. (1998). Formen faecheruebergreifenden Unterrichts auf der Sekundarstufe-eine Einleitung. In L. Dunker, & W. Popp (ed.). Faecheruebergreifender Unterricht in der Sekundarstufe I und II, Prinzipien, Perspektiven, Beispiele. Klinkhardt, 7-33.
  12. Hurley, M.M. (2001). Reviewing integrated science and mathematics: The search for evidence and definition from new perspectives. School Science and Mathematics, 101(5), 259-268.
  13. Johnson, C.C. (2013). Conceptualizing Integrated STEM Education. School Science and Mathematics, 113(8), 367-368.
  14. Johnson, C.C., Peters-Burton, E.E., & Moore, T.J. (ed.) (2016). STEM roadmap: a framework for integrated STEM education. New York: Routledge.
  15. Koehler, C., Bloom, M.A., & Milner, A.R. (2016). The STEM RoadMap for Grades K-2. In C.C. Johnson, E.E. Peters-Burton, & T.J. Moore (ed.). STEM roadmap: a framework for integrated STEM education. New York: Routledge, 41-67.
  16. Labudde, P. (2003). Faecheruebergreifender Unterricht in und mit Physik: eine zu wenig genutzte Chance. Physik und Didaktik in Schule und Hochschule, 2, 48-66.
  17. Landolt, H., Fehlmann, R., Mueller, P., Nussbaumer, H., & Tschenett, A. (1999). Faecherintegrierender Unterricht. Aarau: Sauerlaender.
  18. Lesseig, K., Holmlund, T.N., Slavit, D., & Seidel, R.A. (2016). Supporting Middle School Teachers’ Implementation of STEM Design Challenges. School Science and Mathematics, 116(4), 177-188.
  19. National Research Council. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: National Academies Press.
  20. Pang, J., & Good, R. (2000). A Review of the Integration of Science and Mathematics: Implications for Further Research. School Science and Mathematics, 100(2), 73-82.
  21. Rennie, L., Venville, G., & Wallace, J. (2012). Exploring Curriculum Integration: Why Integrate? In: L. Rennie, G. Venville & J. Wallace (ed.). Integrating Science, Technology, Engineering and Mathematics-Issues, Reflections, and Ways Forward. New York, London: Routledge.
  22. Stohlmann, M.S., Moore, T.J., & Roehrig, G.H. (2012). Considerations for teaching integrated STEM education. Journal of Pre-College Engineering Education Research, 2(1), Article 4.
  23. The ScienceMath Group (ed.) (2009). ScienceMath-Mathematical Literacy And Cross-Curricular Competencies Through Interdisciplinarity, Mathematising and Modelling Science-Results and Material. Hildesheim, Berlin: Franzbecker. Walker, W., S. III. (2017). Integrated STEm or Integrated STEM? School Science and Mathematics, 117(6), 225-227.
  24. Weinberg, A.E., & Sample McMeeking, L.B. (2017). Toward Meaningful Interdisciplinary Education: High School Teachers’ Views of Mathematics and Science Integration. School Science and Mathematics, 117(5), 204-213.
  25. Zell, S. (2011). Mathematical literacy and how scientific experiments can promote that conception. In: Interdisciplinarity for the Twenty-First Century-Proceedings of the Third International Symposium of Mathematics and Its Connections to the Arts and Sciences, Moncton 2009. Information Age Publishing, 411-423.

These references have been extracted automatically and may have some errors. If you see a mistake in the references above, please contact