integrated into the CPU curriculum, where they are used to complement and extend hands-on laboratory activities.

THE CONSTRUCTING PHYSICS UNDERSTANDING PROJECT: INTEGRATING COMPUTER SIMULATORS, HANDS-ON EXPERIMENTS AND GROUP DISCUSSIONS TO PROMOTE MEANINGFUL LEARNING IN PHYSICS
Fred Goldberg, San Diego State University, USA; Valerie Otero, San Diego State University, USA; Andy Johnson, Black Hills State University, USA

The Constructing Physics Understanding Project is a National Science Foundation supported project (Grant No. ESI-9454341) aimed at creating laboratory and computer-based materials to support a learning environment where students take primary responsibility for developing valid and robust knowledge in physics. The CPU project has developed a student-centered pedagogy, carefully sequenced sets of activities in several different topical areas of physical science, and a set of pedagogically-designed computer simulators. Rather than depending on the instructor as the source of knowledge, in the CPU classroom students develop, test and modify their own ideas through experimentation and discussion with their peers. The materials have been used successfully with secondary school physics and physical science students, and with prospective and practicing elementary teachers (through workshops and University courses).

THE INFLUENCE OF INSTRUCTIONAL VIDEO MATERIALS ON STUDENT ACQUISITION OF BIOLOGICAL CONCEPTS
Moses Gostev, Teachers College of Columbia University, USA; O. Roger Anderson, Teachers College of Columbia University, USA

Students’ cognitive preferences in using scientific information were analyzed using a paper and pencil inventory. We found strong and weak cognitive components. Strong components (“questioning-preference”) predicted higher academic performance (p = 0.03, d.f.=19) compared to the remaining “weaker” components (more knowledge-based), which were not readily discriminable from one another. Moreover, “questioning”-type students, compared to the “weaker”- component group, achieved better test scores on higher-level cognitive skills (e.g., application and analysis) (p < 0.02, d.f.=18), but not with basic knowledge, indicating their greater capacity with increasing cognitive demands in learning. Furthermore, use of a video that served as a theme or guiding framework for instruction significantly increased achievement compared to a control group taught in a more conventional way (p = 0.04, d.f.=16). These results suggest that use of thematic-centered video segments, and due attention to strengthening higher order cognitive preferences, in other instructional settings such as computer-based learning may enhance achievement.

EDUCATION AND THE INTERNET OPPORTUNITY
Jennifer Degnan, SmarterKids.com, USA; Beth Standring, SmarterKids.com, USA

SmarterKids.com is the number one educational store on the Internet that is dedicated to providing quality services and products to help parents instill a love of learning in their children. Smarterkids.com is unique for several reasons including the site’s assessment and personalization options. Our Learning Style Survey allows parents and teachers to quickly and easily assess how a child learns best and find appropriate educational tools best suited to that child’s individual style. Our MySmarterKids feature enables parents to develop distinct learning profiles for a child to ensure personalized product recommendations based on the child’s individual learning needs, goals, and styles. Additionally, partnerships with Lightspan.com and National Computer Systems Inc. allow us to better bridge the gap between home and school. Together, we combine award-winning content and up to date statewide standards and assessment information with a unique educational shopping experience.