You are here:

A practical ontology query expansion algorithm for semantic-aware learning objects retrieval

, ,

Computers & Education Volume 50, Number 4, ISSN 0360-1315 Publisher: Elsevier Ltd


Following the rapid development of Internet, particularly web page interaction technology, distant e-learning has become increasingly realistic and popular. To solve the problems associated with sharing and reusing teaching materials in different e-learning systems, several standard formats, including SCORM, IMS, LOM, and AICC, etc., recently have been proposed by several different international organizations. SCORM LOM, namely learning object metadata, facilitates the indexing and searching of learning objects in a learning object repository through extended sharing and searching features. However, LOM suffers a weakness in terms of semantic-awareness capability. Most information retrieval systems assume that users have cognitive ability regarding their needs. However, in e-learning systems, users may have no idea of what they are looking for and the learning object metadata. This study presents an ontological approach for semantic-aware learning object retrieval. This approach has two significant novel features: a fully automatic ontology-based query expansion algorithm for inferring and aggregating user intention based on their original short query, and another “ambiguity removal” procedure for correcting inappropriate user query terms. This approach is sufficiently generic to be embedded to other LOM-based search mechanisms for semantic-aware learning object retrieval.Focused on digital learning material and contrasted to other traditional keyword-based search technologies, the proposed approach has experimentally demonstrated significantly improved retrieval precision and recall rate.


Lee, M.C., Tsai, K.H. & Wang, T.I. (2008). A practical ontology query expansion algorithm for semantic-aware learning objects retrieval. Computers & Education, 50(4), 1240-1257. Elsevier Ltd. Retrieved May 16, 2021 from .

This record was imported from Computers & Education on January 30, 2019. Computers & Education is a publication of Elsevier.

Full text is availabe on Science Direct:


Cited By

View References & Citations Map

These links are based on references which have been extracted automatically and may have some errors. If you see a mistake, please contact