You are here:

Knowledge maps for e-learning


Computers & Education Volume 59, Number 2, ISSN 0360-1315 Publisher: Elsevier Ltd


Maps such as concept maps and knowledge maps are often used as learning materials. These maps have nodes and links, nodes as key concepts and links as relationships between key concepts. From a map, the user can recognize the important concepts and the relationships between them. To build concept or knowledge maps, domain experts are needed. Therefore, since these experts are hard to obtain, the cost of map creation is high. In this study, an attempt was made to automatically build a domain knowledge map for e-learning using text mining techniques. From a set of documents about a specific topic, keywords are extracted using the TF/IDF algorithm. A domain knowledge map (K-map) is based on ranking pairs of keywords according to the number of appearances in a sentence and the number of words in a sentence. The experiments analyzed the number of relations required to identify the important ideas in the text. In addition, the experiments compared K-map learning to document learning and found that K-map identifies the more important ideas.


Lee, J.H. & Segev, A. (2012). Knowledge maps for e-learning. Computers & Education, 59(2), 353-364. Elsevier Ltd. Retrieved January 25, 2020 from .

This record was imported from Computers & Education on January 29, 2019. Computers & Education is a publication of Elsevier.

Full text is availabe on Science Direct: