You are here:

Toward evidence-based learning analytics: Using proxy variables to improve asynchronous online discussion environments
ARTICLE

, Department of Career and Information Studies, United States ; , Center for Teaching and Learning ; , Department of Career and Information Studies, United States ; , Center for Teaching and Learning

Internet and Higher Education Volume 30, Number 1, ISSN 1096-7516 Publisher: Elsevier Ltd

Abstract

Although asynchronous online discussion (AOD) is increasingly used as a main activity for blended learning, many students find it difficult to engage in discussions and report low achievement. Early prediction and timely intervention can help potential low achievers get back on track as early as possible. This study presented a data mining process to construct proxy variables that reflect theoretical and empirical evidence and measured the accuracy of a prediction model that incorporated all of the variables for validation. For the empirical study, data were obtained from 105 university students who were enrolled in two blended learning courses that used AOD as their main activity. The results indicated the high accuracy of the prediction model as well as the possibility of early detection and timely interventions. In addition, we examined participants' learning behaviors in the two courses using the proxy variables and provided suggestions for practice. The implications of this study for education data mining and learning analytics are discussed.

Citation

Kim, D., Park, Y., Yoon, M. & Jo, I.H. (2016). Toward evidence-based learning analytics: Using proxy variables to improve asynchronous online discussion environments. Internet and Higher Education, 30(1), 30-43. Elsevier Ltd. Retrieved October 18, 2019 from .

This record was imported from Internet and Higher Education on January 29, 2019. Internet and Higher Education is a publication of Elsevier.

Full text is availabe on Science Direct: http://dx.doi.org/10.1016/j.iheduc.2016.03.002

Keywords