You are here:

Single Maneuvering Target Tracking in Clutter Based on Multiple Model Algorithm with Gaussian Mixture Reduction
ARTICLE

, Department of Computer, North China Electric Power University Baoding, China ; , Department of Electrical Engineering, University of New Orleans, United States

Journal of Applied Research and Technology Volume 11, Number 5, ISSN 1665-6423 Publisher: Elsevier Ltd

Abstract

The measurement origin uncertainty and target (dynamic or/and measurement) model uncertainty are two fundamental problems in maneuvering target tracking in clutter. The multiple hypothesis tracker (MHT) and multiple model (MM) algorithm are two well-known methods dealing with these two problems, respectively. In this work, we address the problem of single maneuvering target tracking in clutter by combing MHT and MM based on the Gaussian mixture reduction (GMR). Different ways of combinations of MHT and MM for this purpose were available in previous studies, but in heuristic manners. The GMR is adopted because it provides a theoretically appealing way to reduce the exponentially increasing numbers of measurement association possibilities and target model trajectories. The superior performance of our method, comparing with the existing IMM+PDA and IMM+MHT algorithms, is demonstrated by the results of Monte Carlo simulation.

Citation

Zhang, J. & Liu, Y. (2013). Single Maneuvering Target Tracking in Clutter Based on Multiple Model Algorithm with Gaussian Mixture Reduction. Journal of Applied Research and Technology, 11(5), 641-652. Elsevier Ltd. Retrieved November 15, 2019 from .

This record was imported from Journal of Applied Research and Technology on January 29, 2019. Journal of Applied Research and Technology is a publication of Elsevier.

Full text is availabe on Science Direct: http://dx.doi.org/10.1016/S1665-6423(13)71572-4

Keywords