You are here:

Conversations with AutoTutor Help Students Learn
ARTICLE

IJAIE Volume 26, Number 1, ISSN 1560-4292

Abstract

AutoTutor helps students learn by holding a conversation in natural language. AutoTutor is adaptive to the learners' actions, verbal contributions, and in some systems their emotions. Many of AutoTutor's conversation patterns simulate human tutoring, but other patterns implement ideal pedagogies that open the door to computer tutors eclipsing human tutors in learning gains. Indeed, current versions of AutoTutor yield learning gains on par with novice and expert human tutors. This article selectively highlights the status of AutoTutor's dialogue moves, learning gains, implementation challenges, differences between human and ideal tutors, and some of the systems that evolved from AutoTutor. Current and future AutoTutor projects are investigating three-party conversations, called "trialogues," where two agents (such as a tutor and student) interact with the human learner.

Citation

Graesser, A.C. (2016). Conversations with AutoTutor Help Students Learn. International Journal of Artificial Intelligence in Education, 26(1), 124-132. Retrieved August 25, 2019 from .

This record was imported from ERIC on January 10, 2019. [Original Record]

ERIC is sponsored by the Institute of Education Sciences (IES) of the U.S. Department of Education.

Copyright for this record is held by the content creator. For more details see ERIC's copyright policy.

Keywords