Login or register for free to remove ads.
You are here:

E-Learning Content for Computational Geometry PROCEEDINGS

, , National Technical University of Athens, Greece

E-Learn: World Conference on E-Learning in Corporate, Government, Healthcare, and Higher Education, in Orlando, Florida, USA ISBN 978-1-880094-83-9 Publisher: Association for the Advancement of Computing in Education (AACE), Chesapeake, VA

Abstract

The instructor overhead is a major obstacle to visualization technologies. Visualization is highly plausible in two and three dimensions, and these are the dimensions where computational geometry action practically occurs. We propose the creation of a hypertext system that creates e-content for computational geometry teaching. Our system provides geometrical and visualization libraries that allow the quick creation of interactive visualizations of computational geometry algorithms. Learners are able to observe, interact and experiment with the produced animations. Our system utilizes the inherent expressiveness of the Python programming language that permits coding programs that look like pseudo code while advanced low level details are available but easily made transparent. This is crucial because from a pedagogical point of view a computational geometry course should focus on the geometrical algorithmic aspects and somehow abstract the low level details.

Citation

Fragoudakis, C. & Karampatsis, M. (2010). E-Learning Content for Computational Geometry. In J. Sanchez & K. Zhang (Eds.), Proceedings of E-Learn: World Conference on E-Learning in Corporate, Government, Healthcare, and Higher Education 2010 (pp. 90-95). Chesapeake, VA: Association for the Advancement of Computing in Education (AACE).

Keywords