You are here:

Students' Use of Technological Features while Solving a Mathematics Problem


Journal of Mathematical Behavior Volume 25, Number 3, ISSN 0732-3123


The design of technology tools has the potential to dramatically influence how students interact with tools, and these interactions, in turn, may influence students' mathematical problem solving. To better understand these interactions, we analyzed eighth grade students' problem solving as they used a java applet designed to specifically accompany a well-structured problem. Within a problem solving session, students' goal-directed activity was used to achieve different types of goals: analysis, planning, implementation, assessment, verification, and organization. As we examined students' goals, we coded instances where their use of a technology feature was supportive or not supportive in helping them meet their goal. We categorized features of this applet into four subcategories: (1) features over which a user does not have any control and remain static, (2) dynamic features that allow users to directly manipulate objects, (3) dynamic features that update to provide feedback to users during problem solving, and (4) features that activate parts of the applet. Overall, most features were found to be supportive of students' problem solving, and patterns in the type of features used to support various problem solving goals were identified. (Contains 2 figures and 2 tables.)


Lee, H.S. & Hollebrands, K.F. (2006). Students' Use of Technological Features while Solving a Mathematics Problem. Journal of Mathematical Behavior, 25(3), 252-266. Retrieved December 12, 2019 from .

This record was imported from ERIC on April 18, 2013. [Original Record]

ERIC is sponsored by the Institute of Education Sciences (IES) of the U.S. Department of Education.

Copyright for this record is held by the content creator. For more details see ERIC's copyright policy.