
Interdisciplinary Journal of E-Learning and Learning Objects Volume 4, 2008
Formerly the Interdisciplinary Journal of Knowledge and Learning Objects

Editor: Janice Whatley

A Systems Engineering Analysis
Method for the Development of Reusable
Computer-Supported Learning Systems

David Díez, Camino Fernández, and Juan Manuel Dodero
DEI Laboratory – Computer Science Department

Universidad Carlos III de Madrid, Spain

david.diez@uc3m.es
camino.fernandez@uc3m.es juanmanuel.dodero@uc3m.es

Abstract
The development of computer-supported learning systems is a complex task that must take into
account diverse issues and perspectives. Given the difficulties attached to this process, different
authors have proposed the use of software engineering as a reference to optimize the courseware
development process. Following this trend, and given the efficiency of the outcomes, it seems
convenient to adapt existing product line development principles from software engineering to the
development of learning resources. The purpose of this paper is to postulate a specific analysis
method for computer-supported learning systems that guarantees the quality of the development.
This specific analysis method can facilitate the learning object reusability and minimize the rele-
vance of the expertise in the development of learning resources.

Keywords: Computer-supported learning systems, reusability, analysis method, learning objects.

Introduction
Reusability is considered as an essential and undoubtedly the most important quality of learning
objects (Sicilia & Garcia, 2003). A learning object is defined as follows (McGreal, 2004):

“A learning object is any reusable digital resource that is encapsulated in a lesson or as-
semblage of lessons grouped in units, modules, courses, and even programs. A lesson can
be defined as a piece of instruction, normally including a learning purpose.”

So far, there have been many attempts to support learning objects reuse, but most of these efforts
have focused on defining reusable patterns (Baggetun, Rusman, & Poggi, 2004; Jones & Boyle,
2007) and on designing artifacts for evaluating and recovering materials (Cuadrado & Sicilia,
2005; Padrón, Díaz, & Aedo, 2007). Therefore, in keeping with the experience in software devel-

opment, effort should be put to define
methods that permit the discovery of
object commonalities. In turn, this
information would allow for reuse.

Since reusability refers to prospective
and future usage scenarios, it is diffi-
cult to manage. The concept of reus-
ability encompasses aspects related to
format, interpretation, and pedagogi-
cal suitability (Sicilia, 2004). Thus, in
order to achieve effective reusability it

Material published as part of this journal, either on-line or in
print, is copyrighted by the publisher of the Informing Science
Journal. Permission to make digital or paper copy of part or all of
these works for personal or classroom use is granted without fee
provided that the copies are not made or distributed for profit or
commercial advantage AND that copies 1) bear this notice in full
and 2) give the full citation on the first page. It is permissible to
abstract these works so long as credit is given. To copy in all
other cases or to republish or to post on a server or to redistribute
to lists requires specific permission and payment of a fee. Contact
Publisher@ijklo.org to request redistribution permission.

Systems Engineering Analysis Method

244

is necessary to tackle the problem from the point of view of:

• The learning objects. The correct definition and formalization of learning objects to allow
for determining their potential reuse.

• The learning contexts. The adequate specification of the learning context permits determin-
ing the appropriate instruction method and, thereby, identifying the more reusable tasks or
activities.

The standards and tools previously available have focused on the first of the views presented
above by dealing with aspects regarding format (but which overlooks the analysis of the specific
context). In order to overcome this matter, the study of reusability in the development process of
computer-supported learning systems has been proposed. A computer-supported learning system
can be considered as a structured set of learning components, whose qualities and characteristics
rely on the learning components that compose it. Thus, according to this notion, reusability refers
to the ability to use services or learning objects for multiple courses or lessons (Hartshorne,
2003). In this context, the computer-supported learning systems reusability must take into account
the features of the learning system to identify, recover, and use the learning components that
comprise the system. Based on the experience of software development, reusability should be
considered at the early phases of the development process (Kang, 1998). For this reason, and with
the purpose of facilitating the identification of commonalities and further reuse, the definition of
systematic analysis methods is needed.

The rest of the paper is organized as follows. The second section describes the motivations for a
specific analysis approach in the development of computer-supported learning systems. The fol-
lowing sections define our analysis method and include an example on how the approach has
been applied. Finally, a set of conclusions and recommendations for future work are presented.

The Motivation for a Specific Analysis Method
Courseware is defined as any instructional system delivering content via computers that supports
learners as well as teachers in their educational efforts, in a technical and instructional way
(Grützner, Ruhe & Pfahl, 2002). The life-cycle of the earlier courseware development methods
resembles the phases of the traditional software development process: analysis, design, develop-
ment, and evaluation. As Goodyear points out, the relation between software engineering and
learning resources development is particularly strong in analysis-related tasks:

“The main areas of overlap between software engineering and courseware engineering are
probably to be found in those areas concerned with requirements analysis and design.”
(Goodyear, 1995)

The analysis phase is essential in courseware development processes (Wiegers, 2003), as well as
being one of the determinants of product success (Gagne & Medsker, 1995; Hadjerrouit, 2007).
These qualities are themselves very meaningful; nevertheless, we can identify two additional fac-
tors that make analysis one of the most relevant activities in the development of computer-
supported learning resources: (1) Effective reuse must be planned and considered early in the de-
velopment life cycle. (2) Reusability of computer-supported learning systems depends on using
and reusing correct learning components to facilitate a concrete learning context.

Taking these judgments as a main starting point, we focus on the revision of the analysis stage.
The aim of this section is to provide a better understanding of the motivations that lead to the
definition of a specific analysis method.

 Díez, Fernández, & Dodero

 245

The Utility of Systems Engineering Methods
Instructional software development models were conceived as patterns that adapt to the automa-
tion process of the instruction and guide its development. The result is a set of models that focus-
ing on the instruction process and aim at improving the quality of the products. However, despite
the efforts made and the existence of models widely used, there are no absolutely satisfactory ap-
proximations (Grützner et al., 2002; Hadjerrouit, 2007). The review of the different software de-
velopment methods for instruction has shown that there are two main causes for the reduced use-
fulness of such methods, namely:

• The almost direct relation between software development methods and instructional de-
sign models. These are models that have incorporated ideas from other disciplines in or-
der to ease the automation, but they are based on common instructional design processes.
This strand of work complicates the development of computer-based systems.

• Its final use: a process model is not necessarily useful for any situation or context. The
search for general methods reduces the precision, completeness, and efficiency of such
models. However, all the development models heretofore reviewed are conceived as
‘general’ models.

In an attempt to overcome these barriers, it is crucial to apply specific methods to the develop-
ment of computer-supported learning systems. By adapting themselves to the characteristics of
the context, these specific methods must be able to integrate the principles of instructional design
with those of software engineering.

The Function of the Analysis Stage
The analysis stage is the front-end phase of the development process of computer-supported
learning systems. This phase constitutes an essential step of the development process and one of
the critical issues that determines the quality of the final product:

“The analysis phase sets the stage for the whole project. The necessary groundwork for
understanding what the project is all about is completed in this phase. We take the strong
position that the more effort you put into planning, the smoother the rest of the project will
go and the better the quality will be of your final product.” (Alessi & Trollip, 2001)

In spite of its relevance, there is not a homogeneous view on the usefulness or functionality of the
analysis stage in the development process:

• Sequential models. The models define a sequence of stages, in which the results of each
stage are the input for the subsequent one. The sequential models are derived from in-
structional design models. The MISA method (Paquette, 2004), the ‘Alessi & Trollip’
method (Alessi & Trollip, 1991) and the ‘Dick & Cary’ (Dick & Cary, 1990) are included
within this category. The sequential models conceive the analysis as a phase used for the
definition of the educational scenario: objectives of the instruction, profile of the student,
learning environment, etc. The goal of the analysis is to define the educational context in
which such a system is meant to be deployed.

• Iterative models. The development of the system is done by progressively refining the
characteristics of the system. The iterative models are derived from software engineering
principles and artifacts. Amongst the iterative models, rapid prototyping is becoming a
dominant means of design and development (Goodyear, 1997). The knowledge iterative
models propose an analysis phase focused on contents and the presentation style.

With the purpose of overcoming these barriers and setting the ground for an analysis method, it is
essential to establish the principles that the analysis stage must satisfy for this type of system:

Systems Engineering Analysis Method

246

• The instructional domain of an educational problem must be represented and understood.
The scope of the instructional domain must be studied, defined and represented.

• The instructional system should be specified. The behavior of the system, its needs and
conditions, must be identified and represented.

• The domain and system information must be arranged, documented and represented in
order to avoid unnecessary and worthless details.

If borne in mind at the analysis stage, these principles will help to have a better appreciation of
both the instructional and computational aspects of the system.

An Approach to Instructional Engineering Analysis
Having reviewed the problem, we concentrate on the establishment of mechanisms that might be
useful to solve it. This section introduces our proposed solution: a specific method for analyzing
computer-supported instructional systems. First of all, the method requirements will be enumer-
ated; secondly, taking into account the review of the context, we explain the principles which our
method is based on. Finally, we present an overview of our method.

Method Features
Analysis is the stage by which the needs and conditions of the problem are determined in order to
specify the characteristics of the system under development. In order to accomplish this objective,
the method here proposed fulfills the following features:

• Complete. The method must deal with the specification of the problem in all its dimen-
sions. It must avoid any possible omissions that can lead to misunderstanding of the prob-
lem. As a result, the method must include the study of instructional attributes and the
computational aspects of the system.

• Prescriptive. A method establishes the most suitable set of activities that should be car-
ried out so as to achieve a purpose. The method must ensure the provision of an analysis
method that guides the specification of the system.

• Consistent. The method must avoid the contradictions that might arise between the dif-
ferent activities. The result of the specification of the system must be consistent with the
context of the application and the requirements of users.

• Systematic. The method must provide similar results in similar contexts. The definition of
the method artifacts must be carried out concisely and rigorously so as to guarantee its ef-
ficacy, independently of the participants.

An appropriate analysis of the system depends on the mechanisms employed for the representa-
tion of knowledge. Such mechanisms are significant to avoid confusion, doubts, or misinterpreta-
tions and, therefore, they determine the success of the system. In this regard the analysis method
proposed must provide artifacts that, from a certain degree of formalization, allow reducing am-
biguity and vagueness. Finally, in order to set the basis for future applications, the method must
set guidelines that facilitate the automation of the analysis process.

Engineering Principles
A specific method for analyzing computer-supported learning systems should take into account
informational technologies and, accurately, software engineering principles. However, not all
software engineering paradigms can be useful in the field of instructional design and, further,
translating partial ideas from one discipline to another is not recommended. According to this

 Díez, Fernández, & Dodero

 247

thought, the proposed method is based on Product Line Engineering (Clements, Northrop, &
Northrop, 2003) and, specifically, on Domain Engineering.

Domain Engineering addresses the creation of domain models. A domain model represents the set
of requirements that are common to systems within a product line or context (Prieto-Diaz, 1990).
Domain Engineering proposes a development model divided into three phases. The first of such
phases, the domain analysis, is the object of interest of this work. Domain analysis has been se-
lected as the development paradigm because:

• Courseware development needs a structured evolutionary process model in order to deal
with change and evolution (Hadjerrouit, 2007). Domain analysis proposes a continuous
evolution of the domain model, and development of a particular system that exploits pre-
viously accumulated domain knowledge can be the source for new insights about the do-
main that adds to or refines codified domain knowledge.

• Domain analysis helps to build reusable components (Prieto-Diaz, 1990). Reuse is an es-
sential characteristic of designing learning objects and, consequently, of developing com-
puter-supported learning systems. To ensure the reusability of the domain models pro-
duced, domain analysts use diverse sources of domain knowledge. These sources provide
information on the range of potential components and services in the domain.

Domain analysis presents a use-related restriction, as it is often applied on stable and structured
domains (Arango, 1994; Czarnecki, 1998), with rigorous information sources that allow defining
the knowledge of the context in a domain model. Thus, and prior to describing our analysis
method, two issues should be explained: the concept of domain and the information sources that
can be established in the educational context.

The domain definition
The first aspect to be defined concerns the domain and its scope. A learning domain is defined as:

“The set of educational scenarios that share contents, an area of work, as well as peda-
gogical objectives and a specific instructional form. The magnitude of the educational con-
tents considered must make sense by themselves”.

The definition here proposed follows the typical view of the domain analysis methodology: the
concept of domain is related to the type of problem to be solved; that is to say the domain is de-
termined by the set of systems that satisfy a common functionality (Ferré & Vegas, 1999). In the
case of instructional systems, the functionality to be solved is understood as the systematization
of the learning process (Tennyson, 1995). Given that the learning process depends on the instruc-
tional form (which is in turn conditioned by the contents, the context, and the pedagogical objec-
tives), these factors have been taken as essential for the demarcation of a domain. Regarding
scope, the domain considered must go beyond the domain of a certain course or subject and it
must be more reduced than the instructional model or the group of subjects taught within a par-
ticular field of knowledge.

The sources of domain information
Instructional design emerged last century in order to improve the teaching and the learning proc-
esses. Instructional design is a knowledge area oriented to having a better understanding of, as
well as explaining, the instructional process. With this purpose, instructional design determines
the means by which a specific educational objective can be achieved. The application of instruc-
tional design aims to suggest methods and models that better describe the instructional task
(Dijkstra & Merriënboer, 1997). Instructional design provides formalized knowledge, which can
be used as a source of information for the analysis of educational domains. In addition, the cata-

Systems Engineering Analysis Method

248

logues and models of good practices, presented in the IMS-Learning Design (IMS-LD) specifica-
tion (Koper, 2005), can be taken into account, as well as the expertise of the domain and existing
development models and instructional resources already developed. In conclusion, we can iden-
tify sufficient and valid information sources so as to show the existence of a stable domain.

The Learning Analysis Method
Learning Analysis is conceived as an evolutionary instructional engineering analysis method that
enables improving the reusability of learning components. The method is based on a set of spe-
cific artifacts and an analysis process that follows the domain analysis ideas.

Engineering artifacts
An essential requisite of an analysis method, since it establishes the conditions and needs of the
system under development, is to avoid ambiguity and vagueness. To this end, it is necessary to
make use of suitable artifacts that allow the specification of the system. The artifacts deployed
must help to represent the domain model and the system model. In relation to the domain model,
several software engineering approaches propose a careful analysis of the domain; however, fea-
ture modeling is one of the most effective techniques to represent the domain knowledge (Kang,
1998). The underlying motivations for using feature modeling are:

• Users, instructional designers and application engineers usually communicate in terms of
application features. These terms in a domain constitute domain terminology and they are
used to characterize specific applications (Lee, Kang, Chae, & Choi., 2000).

• Reusable software contains inherently more variability than specific applications, and
feature modeling is the key technique for identifying and capturing commonality and
variability (Czarnecki, 1998).

Feature modeling captures the capabilities of an application in a domain in terms of features. A
feature model represents the common and the variable features of the concepts involved in the
problem and the dependencies between them. In our approach, a feature is defined as:

“A distinguishable characteristic of a system concept that is relevant to the instructional
process in a specific learning domain.”

A feature model comprises a feature diagram and some additional information, such as a short
semantic description of each feature. A feature diagram consists of a set of nodes, corresponding
to a domain feature and the commonality level of such feature, such as high or medium, a set of
directed edges, and a set of edge decorations. The nodes and the edges form a feature tree. The
edge decorations define the relation among the sub-nodes of a particular node. As shown in Fig-
ure 1, the edge decorations are drawn as arcs connecting subsets or all of edges originating from
the same node. Different types of features concern different types of interests in systems devel-
opment, so a system cannot be built unless these different groups of features are decided upon by
each respective group of experts (Kang, 1998). Especially, we have classified the instructional
domain features into four different categories:

• Capability. Features that are associated with the services or functions provided by the
system and which constitute the main concern of users: teachers and students. It corre-
sponds to contents, learning services and the attributes of potential students.

• Domain technology. The category represents instructional design details. In an educa-
tional context, domain technology features compile the instructional theories and the
most suitable methods to the domain. It is the concern of instructional designers.

 Díez, Fernández, & Dodero

 249

• Operation environment. An operation environment feature represents attributes of the en-
vironment in which a system is used. It corresponds to the instructional standards and
learning specifications that are the concern of system designers.

• Implementation technique. The category represents implementation details used to de-
velop and deploy a computer-supported learning system. It comprises platforms, tools,
learning activities and supported services used in the domain. Implementation technique
features are the concern of end developers.

Engineering process
In addition to engineering artifacts, Learning Analysis provides a well-defined engineering proc-
ess. An engineering process is understood as a networked sequence of activities, tasks and events
that embody strategies for accomplishing a product development. In our approach, the analysis
process is broken down into two stages:

• Domain analysis. The domain analysis stage consists of activities for studying the domain
knowledge and creating a model. The stage aims at analyzing the sources of domain in-
formation in order to define a set of commonalities for the systems in such a domain.

• System analysis. Activities for analyzing a specific learning system by using the domain
model created in the domain analysis stage. The system analysis aims at specifying the
constraints and functional requirements of a specific computer-based learning system.

The use of an analysis method divided into two independent but interrelated processes is one of
the reasons for the success of reuse. Domain analysis focuses on supporting systematic and large-
scale reuse by capturing both the commonalities and the variability of systems within a domain
(Czarnecki, 1998). The results of the domain analysis are used by the system analysis to identify
potential elements for reuse in a specific application. The following paragraphs focus on a more
detailed description of the activities that make up each of these stages.

Domain analysis. The purpose of ‘domain analysis’ is to select and define the domain of focus,
collect relevant domain information, and integrate such information into a domain model. The
final goal is to specify domain learning commonalities in order to identify potential learning
components. The domain analysis stage consists of three phases:

Stage 1: Domain scoping. This phase defines the scope of the domain. Domains are ab-
straction that group particular sets of systems or areas of learning. Moreover, a domain

Figure 1: Feature diagram with optional features.

Systems Engineering Analysis Method

250

can overlap and even enclose other domains. Scoping a domain is therefore not like
choosing an item out of a catalog. Keeping these factors in mind, the activities for do-
main scoping are identified as follows:

o Domain selection is the first activity of the domain scoping phase. Domain engi-
neers perform a scan for possible learning domains, working with the stake-
holders to refine their selection and choose the right domain. The choice of do-
main should be driven by the contents and the pedagogical objectives.

o Having identified the target domain and the domain boundary, the information on
the domain needs to be compiled. As explained previously, the information can
be provided by experts or collected from available references (instructional de-
sign theories and models, best practices and best practice patterns), domain ex-
perts and knowledge learning systems.

o Document the context. The specific terms used in the domain are defined in the
domain terminology dictionary. The terminology dictionary serves as a commu-
nication medium between stakeholders and designers.

Stage 2: Domain featuring. Once the domain has been scoped, the domain featuring
phase provides the steps to identify the features of the domain. Domain featuring defines
a set of reusable and configurable requirements for specifying the learning system in an
instructional domain. Additionally, the name and the commonality level of the identified
features must be established.

Feature identification is guided by ‘feature starter sets’ (Czarnecki, 1998). Feature
starter sets define the collection of features suitable for the domain. In our method,
such sets of features correspond to the categories enumerated previously: capability,
domain technology, operation environment, and implementation technique. For each
category, compiled information is reviewed, differences and similarities between
domain entities are recorded, and specific features are identified.

Stage 3: Domain modeling. Once the features of the domain have been identified, named,
and classified, a hierarchical model should be created by classifying and structuring fea-
tures. Hierarchical diagrams allow domain engineers to classify features as mandatory,
alternative, and optional.

In addition to the feature model, a set of business restrictions rules between features
must be defined. Such rules are a type of constraints on the use of a feature. Restric-
tion rules have four outlines: (1) One feature requires the existence of another fea-
ture; (2) Two features are mutually exclusive; (3) One feature should be used with
another; (4) One feature should be preceded by a set of features.

Whether the domain model correctly represents the features of the domain and the re-
strictions between them should be validated by domain experts.

The domain model represents the knowledge information of the domain. This is a dynamic model
that can be refined continuously over its life-cycle by adding new knowledge. As more knowl-
edge is added to the model, it becomes more precise and useful.

System analysis. ‘System analysis’ is the process of building learning systems based on the result
of the domain analysis. In the same way as domain analysis, this stage consists of three phases:

Stage 1: System scoping. The first activity of the system analysis stage is the definition of
the system scope. The scope of the system is laid down by its functionality; that is, by a
set of business needs and conditions. In a computer-supported learning system, the scope
is determined by two kinds of needs: (1) Instructional need - a collection of learning

 Díez, Fernández, & Dodero

 251

goals that will be carried by the system; (2) Computational needs - requirements related
with the system behavior. In addition, administrative and organizational conditions
should be considered.

Stage 2: System featuring. Once the scope of the system is defined, and taking as a refer-
ent the domain model, a selection of the features that match customers’ needs is made.
The selection of features is achieved by following guidelines:

1. First of all, an effective method for identifying such a feature set is based on the
four categories previously enumerated, i.e. first considering capabilities, then op-
erating environments, and finally domain technologies and implementation tech-
niques.

2. Secondly, restrictions rules set up constraints and optimal selections, i.e. if one
feature requires the existence of another one, the latter will be selected. On the
other hand, two features may not be held concurrently; the selection of one of
them rules out the other.

After that, those features not compiled in the domain model (e.g. security or perform-
ance features) are determined and included in the feature diagram.

Stage 3: System modeling. The system features diagram represents the most relevant sys-
tem characteristics. However, such a model is not conceived to specify the system but to
describe the learning requirements and instructional conditions. Furthermore, the last ac-
tivity of the system analysis is to define a system model. Such a model comprises all the
information required to specify both the learning context and the application. The model
system will be broken down into four views or perspectives:

1. Structural view, which defines the properties and relationships between the enti-
ties represented in the business model. In our case, the structural view represents
both the learning contents, and learners’ characteristics.

2. Operational view, which represents the functional and administered operations of
the system: (1) Supported activities - the set of operations to manage the system;
(2) Learning services - instructional activities provided by the system. Such ac-
tivities are divided into learning, monitoring and authoring.

3. Behavioral view, which is used to describe the flow of operations that are exe-
cuted in order to successfully achieve the outcomes of the system. The behavioral
view often also describes how the entities defined in the structural view are refer-
enced as part of the operations.

4. Contextual view, which represents those conditions that determine the instruc-
tional process. The contextual view comprises information about the duration of
the course, administrative issues, etc.

The final result is a description of the system (system-features diagram) and a specification of
both the learning context and the application (structural, operational, behavioral and contextual
views).

Learning and Teaching Programming
Having presented the principles of the analysis method, a practical application is next illustrated.
The purpose of this case study is to show how this methodology operates and the usefulness of
our solution. The learning and teaching programming domain has been selected, because:

Systems Engineering Analysis Method

252

• It is a well-known domain. There is a long list of references in which this domain is the
object of interest.

• Developing programming courses is a complex process. The design of the course is
mainly determined by the expertise of designers.

• Learning material reusability is a common but non-trivial outcome. Materials must be
adapted to the characteristics of the students and the resources available.

Following the definition of the learning scenario, a set of activities needs to be carried out. First
of all, as part of the ‘domain analysis’ process, the compilation of information on such a problem,
the identification of the aspects that characterize the domain, and the classification of these as-
pects by considering the categories indicated above are completed. Thus, as an example, the fol-
lowing clauses describe a simplified version of the feature diagram shown in Figure 2:

• Capability. The characteristics included in this group refer to: (1) Profile of the student,
which in the field of computer programming can be (Dreyfus & Dreyfus, 1986): novice,
advance beginner, competence, proficiency and expert; (2) Contents, which according to
Davies (1993), includes two kinds of content that can be learnt by a student, i.e. pro-
gramming knowledge (e.g. loop sentence) and programming strategies (e.g. using a loop
appropriately in a program); (3) Learning objectives, which can be grouped as follows:
those regarding programming design, code implementation, and result evaluation (Rob-
ins, Rountree & Rountree, 2003).

• Domain technology. In general, the most adequate instruction design for learning pro-
gramming is: reading, problem-based learning, and discovery learning. The latter can be
carried out both individually and collaboratively (in groups of students).

• Implementation techniques for: (1) Activities, including computer room activities, guided
laboratory and tutorials; and (2) Services, including collaboration, sequencing and group
management.

Figure 2: Domain-feature diagram. Learning and teaching programming domain.

 Díez, Fernández, & Dodero

 253

Finally, a set of rules and conditions that relate these features and that establish the restrictions
between them are defined. Examples of these restrictions are the following:

o The profiles of students are exclusive, i.e. a student cannot be allocated to two profiles at
the same time.

o There is a dependency relation between contents, i.e. it is not possible to transmit con-
tents on programming strategies without the students already having acquired prior
knowledge on such contents.

o Problem-based learning is advisable so as to acquire knowledge on code implementation,
and this requires carrying out laboratory-based activities.

o Group management services are not suitable for beginners. Novice programmers are very
local and concrete in their comprehension of programming knowledge (Wiedenbeck,
Ramalingam, Sarasamma & Corritore, 1999). Furthermore, they have problems defining
appropriate algorithms and identifying the accurate strategy to resolve a specific and de-
tailed problem (Robins et al., 2003). Because of these constraints, beginners have only
limited skills to organize and manage their work.

The feature-domain model is useful as a reference for the analysis of diverse domain learning sys-
tems. At the preliminary stages of the development of a new system it is not obligatory to start
from scratch, but it is possible to follow the guidelines of the feature model. Likewise, the process
identifies the common elements among domain systems.

In the particular case of the learning and teaching programming domain, the ‘system analysis’
process for the design of a programming-related subject for the first course of the degree on
Computer Engineering consists of the following steps:

• Determine the objectives of the course, the profile of the students, and the type of knowl-
edge to be generated. Specifically, in our work, we wish to elaborate a programming
course for novice students, focused on the transmission of knowledge that permits the
coding of simple programs.

• Having validated possible restrictions to the capabilities selected, the instructional
method to be used has to be identified. In this case, and after reviewing potential alterna-
tives, it was decided to choose problem-based learning.

• Based upon the instructive method selected, and bearing in mind the restrictions of the
model, the most appropriate activities were chosen (i.e. laboratory-based activities and
guided laboratories)

• Finally, in order to complete the requirements identification stage, a revision of the fea-
tures specific to the course, although not included in the domain model, was made, in-
cluding specification of administrative characteristics (course duration, number of stu-
dents, etc.), facilities and technological devices available, previous experience of students
in on-line courses, and evaluation mechanisms.

The most innovative result of this analysis is the description of the system as a system-feature
model. Thus, for instance, since one of the purposes of our course is to teach types of data, and
given that this content is a common feature in the domain, it is likely to find learning objects that
have already been produced. Taking into account this approach, the first stage of the analysis
process contributes to having a better understanding of which elements the system design should
concentrate on so as to enhance the reusability of learning objects.

Systems Engineering Analysis Method

254

Conclusion and Future Research Work
The application of software engineering in instructional design has turned out to be an appropriate
working strategy to optimize the design and development of learning objects. According to this
idea, an approach for the analysis of computer-supported learning systems has been presented.
This approach, called Learning Analysis, proposes a systematic discovery and exploitation of
commonalities across related learning domains for achieving successful reuse. By examining a
family of related domain knowledge and the best practices underlying this knowledge, it is possi-
ble to obtain a set of reference models expressed in terms of ‘features’. The model that captures
the commonalities and differences is called a ‘feature model’, and it is used to support both engi-
neering of reusable materials and the specification of the new learning system.

Furthermore, the use of a method based on domain analysis establishes the baseline for the defini-
tion of a complete method in Domain Engineering. In this case, the existence of groups of domain
features would be associated or related to templates of learning material. As a result, it would be
possible to automate the search and selection of the learning object to be reused.

Future work will lead to the refinement and specification of the guidelines here proposed, which
constitute essential tools for the development of diverse models. The approach presented must be
refined, elaborated and improved through its application to other real cases studies. Finally, the
method will be assessed in two ways: its utility to analyze computer-supported learning systems,
and its usefulness to identify reusable learning components.

The final objective will be the definition of a complete method of Domain Engineering that will
allow transferring and adapting the guidelines defined for Product Line Engineering and Genera-
tive Programming (Dodero, Sánchez-Alonso & Frosch-Wilke, 2007) to the development of com-
puter-supported learning systems.

References
Alessi, S. M., & Trollip, S. R. (1991). Computer-based instruction: Methods and development. New Jersey:

Prentice Hall.

Alessi, S. M., & Trollip, S. R. (2001). Multimedia for learning: Methods and development. New Jersey:
Allyn and Bacon.

Arango. G. (1994). Domain analysis methods. In W. Schafer, R. Prieto-Diaz, & M. Matsumoto (Eds.),
Software reusability (pp. 17-49). London: Ellis Horwood.

Baggetun, R., Rusman, E., & Poggi, C. (2004). Design patterns for collaborative learning: From practice to
theory and back. Proceedings of World Conference on Educational Multimedia, Hypermedia and Tele-
communications, 2493-2498.

Clements, P., Northrop, L., & Northrop, L. M. (2003). Software product lines: Practices and patterns. Bos-
ton: Addison Wesley.

Cuadrado, J. J., & Sicilia, M. A. (2005). Learning object reusability metrics: Some ideas from software
engineering. Proceedings of the First International Conference on Internet Technologies and Applica-
tions.

Czarnecki, K. (1998). Generative Programming. Principles and techniques of software engineering based
on automated configuration and fragment-based component models. PhD Thesis, Technical University
of Ilmenau.

Davies, S. P. (1993). Models and theories of programming strategy. International Journal of Man-Machine
Studies, 39, 237–267.

Dick, W., & Cary, L. (1990). The systematic design of instruction. New York: Harper Collins.

 Díez, Fernández, & Dodero

 255

Dijkstra, S., & Merriënboer, J. J. G. van. (1997). Plans, procedures, and theories to solve instructional de-
sign problems. In S. Dijkstra, N. Seel, F. Schott, & R. D. Tennyson (Eds.), Instructional design: Inter-
national perspective. Volume 2 - Solving instructional design problems (pp. 23-43). New Jersey: Law-
rence Erlbaum Associates.

Dodero, J. M., Sánchez-Alonso, S., & Frosch-Wilke, D. (2007). Generative instructional engineering of
competence development programmes, Journal of Universal Computer Science, 13(9), 1213-1233.

Dreyfus, H. & Dreyfus, S. (1986). Mind over machine: The power of human intuition and expertise in the
era of the computer. Free Press.

Ferré, X., & Vegas, S. (1999). An evaluation of domain analysis methods. Proceedings 4th CAiSE Work-
shop on Exploring Modelling Methods for Systems Analysis and Design, 1999.

Gagne, R. M., & Medsker, K. L. (1995). The conditions of learning: Training applications. Belmond:
Wadsworth Publishing.

Goodyear, P. (1995). Infrastructure for courseware engineering. In R. D. Tennyson & A. E. Barron (Eds.),
Automating instructional design: Computer-based development and delivery tools (pp.11-31). New
York: Springer Verlag.

Goodyear, P. (1997). Instructional design environments: Methods and tools for the design of complex in-
structional systems. In S. Dijkstra, N. Seel, F. Schott, & R. D. Tennyson (Eds.), Instructional design:
International perspective. Volume 2 – Solving instructional design problems (pp. 83-111). Kentucky:
Lawrence Erlbaum Associates.

Grützner, I., Ruhe, G., & Pfahl, D. (2002). Systematic courseware development using an integrated engi-
neering style method. Proceedings of Networked Learning In A Global Environment: Challenges and
Solutions for Virtual Education. Retrieved November 21, 2007, from
http://publica.fraunhofer.de/documents/N-9565.html

Hadjerrouit, S. (2007). Applying a system development approach to translate educational requirements into
e-learning. Interdisciplinary Journal of Knowledge and Learning Objects, 3, 107-134. Retrieved from
http://ijello.org/Volume3/IJKLOv3p107-134Hadj296.pdf

Hartshorne, R. (2003). Thoughtful creation of online course content: implications of SCORM for educators.
Academic Exchange Quarterly.

Jones, R., & Boyle, T. (2007). Learning object patterns for programming. Interdisciplinary Journal of
Knowledge and Learning Objects, 3, 19-28. Retrieved from http://ijello.org/Volume3/IJKLOv3p019-
028Jones.pdf

Kang, K.C. (1998). FORM: A feature-oriented reuse method with domain-specific reference architectures.
Annals of Software Engineering, 5, 143-168.

Koper, R. (2005). An introduction to learning design. In R. Koper & C. Tattersall (Eds), Learning design. A
Handbook on modelling and delivering networked education and training (pp. 3–19). Berlin: Springer
Heidelberg.

Lee, K., Kang, K. C., Chae, W., & Choi, B. W. (2000). Feature-based approach to object-oriented engineer-
ing of applications for reuse. Software-Practice and Experience, 1025-1046.

McGreal, R. (2004). Learning objects: A practical definition. International Journal of Instructional Tech-
nology and Distance Learning, 9(1). Retrieved November 21, 2007, from
http://www.itdl.org/Journal/Sep_04/article02.htm

Padrón, C. L., Diaz, P., & Aedo, I. (2007). Towards an effective evaluation framework for IMS LD based
didactic materials: Criteria and measures. Proceedings of International Conference on Human Com-
puter Interaction, 312-321.

Paquette, G. (2004). Instructional engineering in networked environments. San Francisco: Pfeiffer.

Prieto-Diaz, R. (1990). Domain analysis: An introduction. Software Engineering Notes, 15(2), 47-54.

Systems Engineering Analysis Method

256

Robins, A., Rountree, J., & Rountree, N. (2003). Learning and teaching programming: A review and dis-
cussion. Computer Science Education, 13(2), 137-172.

Sicilia, M. A., & Garcia, E. (2003). On the concepts of usability and reusability of learning objects. The
International Review of Research in Open and Distance Learning, 4(2). Retrieved November 21, 2007,
from http://www.irrodl.org/index.php/irrodl/article/view/155/702

Sicilia, M. A. (2004). Reusability and reuse of learning objects: Myths, realities and possibilities. Proceed-
ings of the First Pluri-Disciplinary Symposium on Design, Evaluation and Description of Reusable
Learning Contents. Retrieved November 21, 2007, from
http://ftp.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-117/paper38.pdf

Tennyson, R.D. (1995). Instructional system development: The fourth generation. In R. D. Tennyson & A.
E. Barron (Eds.), Automating instructional design: Computer-based development and delivery tools
(pp. 33-78). New York: Springer Verlag.

Wiedenbeck, S., Ramalingam, V., Sarasamma, S., & Corritore, C. L. (1999). A comparison of the compre-
hension of object-oriented and procedural programs by novice programmers. Interacting with Com-
puters, 11, 255-282

Wiegers, K. E. (2003). Software requirements: Practical techniques for gathering and managing require-
ments throughout the product development cycle. Redmond: Microsoft Press

Biographies
David Díez holds a Computer Science Degree from the Universidad
Autónoma de Madrid, and MSc in Computer Science and Technology
from the Universidad Carlos III of Madrid. From 1998 to 2005, he
worked as software engineering and project manager for different mul-
tinationals companies. Currently, he works as an assistant teacher at
the Universidad Carlos III de Madrid, and he is doing his PhD Thesis
concerned to technological support for learning systems.

Camino Fernández got her PhD at the Universidad Politécnica de
Madrid, and works as Associate Professor at the Computer Science
Dept. at the Universidad Carlos III de Madrid. Her main research inter-
est is adaptive systems. She has applied ideas in various fields, ranging
from robots to digital libraries or e-learning systems. She has published
over 50 papers in journals, books, and conferences in these areas.

 Díez, Fernández, & Dodero

 257

Juan Manuel Dodero holds a Computer Science Degree from the
Universidad Politécnica de Madrid (1993) and a PhD in Computer Sci-
ence from the Universidad Carlos III de Madrid (2002), where he is
currently associate professor. He is co-author of more than a dozen
publications on international journals and books, and more than 30
communications in international research conferences. In 2005, he re-
ceived the IEEE TCLT young researcher award for his early post-doc
research activities on learning technologies.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [305 305]
 /PageSize [432.000 648.000]
>> setpagedevice

